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1
MATERIAL DATA PROCESSING PIPELINE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the field of com-
puter graphics. More specifically, the invention relates to a
material authoring pipeline.

2. Description of the Related Art

The term computer aided design (CAD) refers to a broad
variety of computer-based tools used by architects, engineers,
animators, video game designers, and other graphics and
design professionals. CAD applications may be used to con-
struct computer models or drawings representing virtually
any imaginable two-dimensional (2D) or three-dimensional
(3D) construct. Initially, such a construct is defined in part by
the regions making up the surface of that construct. A render-
ing application may be used to add detail to the construct by
applying materials to various regions of the construct. Addi-
tionally, computer models can be static or animated, where
time is a fourth dimension. For example, rendering a motion-
blurred object is a four-dimensional (4D) rendering process.

The perceived realism of a rendered scene depends in part
on the quality of the materials applied to constructs within the
scene. Materials are typically generated using a program
known in the art as a “shader” that transforms raw data into a
computer representation. The raw data associated with mate-
rials is often generated by scanning surfaces using a material
scanner. For example, a sample of sandpaper may be scanned
to gather raw data that could be used to generate a material
resembling the actual texture of the sandpaper. Material scan-
ners are often configured with a number of mobile light
sources of variable intensity that illuminate the surface from
many different angles and with a range of intensity. A number
of' mobile digital cameras may then record the response of the
surface to the different configurations of lighting and inten-
sity. The data output by a material scanner describes the
response of the scanned surface to the variety of lighting
conditions.

FIG. 1 illustrates the response of a surface 102 to an inci-
dent light beam 104, according to prior art. Depending on the
physical properties of surface 102, light beam 104 may be
reflected away from surface 102, scattered by surface 102,
transmitted through surface 102, scattered upon transmission
through surface 102, and may undergo subsurface scattering
caused by surface 102, among others. Each of these effects
may be measured by cameras surrounding material 102. The
captured data, referred to as “BxDF data,” may be digitally
recorded on a computer memory. A material that represents
the surface may then be manually programmed by a computer
programmer for use when rendering using a particular ren-
dering engine. The material may be programmed to compress
the captured data using a BXxDF compression algorithm.

One drawback of this conventional approach is that mate-
rials based on the captured data are usually generated for use
with only one rendering engine, due to the complex program-
ming involved. Additionally, if a material is created that
implements a first BxDF compression algorithm, then there is
no way to determine how the quality of the resultant material
compares to a material that implements a second BxDF com-
pression algorithm, without explicitly programming both
materials. These inherent limitations cause programming of
materials using conventional techniques to be an inefficient
and cumbersome endeavor.
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Accordingly, there remains a need in the art for an efficient
way to generate shaders from scanner data.

SUMMARY OF THE INVENTION

Embodiments of the invention provide a method for gen-
erating a shader that is used by a rendering engine to render a
visual representation of a computer model. A shader genera-
tion engine (SGE) receives a set of surface data that describes
a surface in view of various lighting conditions. The shader
generation engine compresses the set of surface data to gen-
erate a compressed representation of the set of surface data
based on a selected compression algorithm. The shader gen-
eration engine generates a shader based on the compressed
representation that is configured to be implemented with a
rendering engine, and generates a set of shader data based on
the compressed representation that includes a set of material
characteristics for coloring pixels of the visual representation.

Advantageously, the shader generation process is simpli-
fied compared to prior art techniques. A shader generation
engine is capable of generating different shaders for a par-
ticular surface according to a user selection of a compression
algorithm and a user selection of a rendering engine, allowing
the user to compare the performance quality of shaders asso-
ciated with different compression algorithm-rendering
engine combinations without manually programming the
shaders.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1is a prior art diagram that illustrates the response of
a surface to an incident light beam.

FIG. 2 is a block diagram of a material authoring pipeline,
according to one embodiment of the invention.

FIG. 3 is a conceptual diagram illustrating different com-
binations of compression algorithms and rendering engines
that may be used to generate a representation-specific shader,
according to one embodiment of the invention;

FIG. 4 is a flowchart of method steps for generating a
representation-specific shader and associated shader data,
according to one embodiment of the invention; and

FIG. 5 is a block diagram of a computer system configured
to implement one or more aspects of the present invention.

DETAILED DESCRIPTION

FIG. 2 is a block diagram of a material authoring pipeline
200, according to one embodiment of the invention. The
components illustrated in FIG. 2 may include computer soft-
ware applications executing on existing computer systems,
e.g., desktop computers, server computers, laptop computers,
tablet computers, video game consoles, mobile devices, and
the like. The software applications described herein, however,
are not limited to any particular computer system and may be
adapted to take advantage of new computer systems as they
become available.

Additionally, the components illustrated in FIG. 2 may be
implemented as software applications that execute on a single
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computer system or on distributed systems communicating
over computer networks such as local area networks or large,
wide area networks, such as the Internet. For example, a
shader generation engine (SGE) 202 may include a software
program executing on a client computer system at one physi-
cal location communicating with a rendering engine 208 at
another physical location. Also, in one embodiment, the ren-
dering application 208 and the SGE 202 may be provided as
application program (or programs) stored on computer read-
able storage media such as a CD-ROM, DVD-ROM, flash
memory module, or other tangible storage media.

As shown, material authoring pipeline 200 includes, with-
out limitation, SGE 202, one or more representation-specific
shaders 204, shader data 206 associated with each represen-
tation-specific shader 204, one or more rendering engines
208, and input file 210. Material authoring pipeline 200
optionally includes a BxDF file 214 and an encryption library
226. Input file 210 is provided by a user and includes data that
describes the response of a surface to a variety of lighting
conditions, referred to herein as “surface data.”” The surface
data stored within input file 210 is gathered by scanning the
surface with a material scanner, as previously described in
FIG. 1. Numerous material scanners are commercially avail-
able, and each may generate surface data in a different format.
In one embodiment, the surface data may be converted by the
user into a vendor-specified format. The user may, for
example, program a routine to convert the surface data into
the vendor-specified format, or the user may configure the
material scanner to output surface data directly to the vendor-
specified format. In one embodiment, input file 210 is an
Extensible Markup Language (XML) file.

Input file 210 is received by SGE 202 and processed by a
conversion library 212. Conversion library 212 is configured
to convert the surface data stored within input file 210 to a
material scanner-neutral format for further processing. This
format approximates the response of the surface as a bidirec-
tional reflectance distribution function (BRDF) and a bidirec-
tional transmittance distribution function (BTDF). Referring
back to FIG. 1, the BRDF is shown to correspond to specular
reflection 106 and reflected scatter distribution 108; whereas,
the BTDF is shown to correspond to specular transmission
110 and transmitted scatter distribution 112. These distribu-
tions are collectively known as the “BxDF.” Referring again
to FIG. 2, input file 210 is converted into BxDF data 216 by
conversion library 212.

In one embodiment, BxDF file 214 that includes BxDF
data 216 is directly provided by a user to SGE 202. A user
may, for example, wish to hide proprietary surface data output
by a material scanner. For example, a user may create a
computer program to convert the proprietary surface data into
BxDF file 214. In such an embodiment, input file 210 is not
input by the user, and conversion library 212 is bypassed
altogether.

An /O library 218 within SGE 202 includes subroutines
corresponding to a variety of compression algorithms that
may be used to compress BXxDF data 216. The compression
algorithms implement different “models,” and are provided
as subroutines within the I/O library 218. These models may
include the Phong model, the Blinn-Phong model, the Ward
model, the Cook-Torrence Model, the Ashikmin Model, the
Lafortune model, the He model, the Splines model, the
spherical harmonic model, the spherical wavelets model, the
singular values decomposition model, the normalized
decomposition model, the non-negative matrix factorization
model, the harmonic factorization model, and the importance
sampling oriented factorization model, among others. 1/O
library 218 receives a user selection of a compression algo-
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4

rithm and generates a compressed/factored representation
222 of BxDF data 216. In one embodiment, the precision of
the selected compression algorithm may also be specified by
the user.

Compressed/factored representation 222 is stored within a
representation 220 that also includes a representation-specific
/O module 224. Representation-specific /O module 224
receives user input specifying a particular rendering engine
208 and is configured to generate representation-specific
shader 204 and associated shader data 206 based on this
selection. Representation-specific shader 204 is a software
program that is executed by the selected rendering engine 208
to generate a visual representation of the surface associated
with the compressed/factored representation 222. This visual
representation may be output to a computer display.

Shader data 206 is associated with representation-specific
shader 204 and provides data used by representation-specific
shader 204 and rendering engine 208 to generate the pixels
comprising the visual representation of the surface. In one
embodiment, shader data 206 may be encrypted. Encryption
library 226 provides encryption information that may be used
by the representation specific I/O module 224 and the I/O
library 218 to encrypt the shader data 206.

Rendering engines 208 may include software rendering
engines, such as Mental Ray or RenderMan, hardware ren-
dering engines that use OpenGL or DirectX application pro-
gramming interfaces (APIs), or third-party rendering engines
such as Gelato. Rendering engines 208 may be provided
separately from SGE 202, or vendor-provided rendering
engines may be provided with SGE 202. In one embodiment,
representation-specific /O module 224 may perform an opti-
mization on compressed/factored representation 222 based
onauser selection of rendering engine 208 prior to generating
representation-specific shader 204 and shader data 206.

Once representation-specific shader 204 and shader data
206 are generated, rendering engine 208 may render a visual
representation of the surface on a computer display. A user
may then visually inspect the results. The user may also select
a different compression algorithm or a different rendering
engine 208 with which another representation-specific shader
204 may be generated using SGE 202. The first representa-
tion-specific shader 204 and associated shader data 206 may
besaved, and a second representation-specific shader 204 and
associated shader data 206 may then be generated based on a
user selection of a second compression algorithm and/or sec-
ond rendering engine 208. The user may generate any number
of representation-specific shaders 204 and associated shader
data 206 based on the BXDF data 216, where the number may
be equal to the number of compression algorithm subroutines
in the I/O library 218 multiplied by the number of available
rendering engines 208. Each combination may be used to
render a different visual representation of the material
described by BxDF data 216. The user may compare the
results of rendering using one representation-specific shader
with the results of rendering using a different representation-
specific shader to determine which representation-specific
shader provides the better result, without explicitly program-
ming each representation-specific shader from scratch.

In alternative embodiments, a third-party may generate the
representation-specific shader 204 and the associated shader
data 206 based on a selection of a compression algorithm and
a rendering engine 208. The representation-specific shader
204 and the associated shader data 206 may then be shipped
to a user and used to render a visual representation of the
surface with the third-party selected rendering engine 208. In
still further embodiments, multiple rendering engines may
use the same shader data 206 when rendering a scene. Soft-
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ware rendering engines may be configured to share the shader
data 206, and only implement the shaders using a specific
renderer API.

FIG. 3 is a conceptual diagram illustrating different com-
binations of compression algorithms 310 and rendering
engines 320 that may be used to generate a representation-
specific shader 330 for a particular set of BxDF data 216,
according to one embodiment of the invention. Compression
algorithms 310-1 through 310-N may be subroutines
executed by [/O library 218 to implement a model that
approximates the BxDF data 216. Each model may be clas-
sified as an analytical model or a numerical model. An ana-
lytical model represents BxDF data 216 by generating a func-
tion or functions that output an approximation of the original
BxDF data 216 when those functions are evaluated with cer-
tain input data. In one embodiment, the function(s) and the
associated input data occupy a smaller memory footprint than
the original BxDF data 216. A numerical model represents
BxDF data 216 by performing a reversible mathematical
transformation on the BxDF data 216 that results in a
reduced-size representation of the BxDF data 216. For
example, if the BXxDF data 216 is a matrix of numbers, then
matrix may be transformed into several smaller matrices that
would, as a whole, occupy a smaller memory footprint than
the BxDF data 216. To recreate the BXDF data 216, these
smaller matrices could be multiplied together in a particular
sequence. Both the analytical models and the numerical mod-
els may be implemented with varying degrees of accuracy,
and may be used to generate approximations that may be
visually indistinguishable from the original BxDF data 216.

A user may select any of the provided compression algo-
rithms 310-1 through 310-N to compress the BxDF data 216
and may select one of the rendering engines 320-1 through
320-M. Rendering engines 320-1 through 320-M may
include Mental Ray, RenderMan, Maya, or other rendering
engines. Rendering engines 320-1 through 320-M may
implement different rendering techniques, such as ray trac-
ing, rasterization, radiosity, or ray casting, and may be spe-
cifically designed to handle 2D images, 3D images, 3D ani-
mation, and/or 4D images such as motion-blurred images,
among others.

Based on a user selection of one of the compression algo-
rithms 310-1 through 310-N and one of the rendering engines
320-1 through 320-M, SGE 202 generates a representation-
specific shader 330-1.1 through 330-N.M. In practice, SGE
202 also generates shader data 206 (not shown in FIG. 3)
associated with each representation-specific shader 330-1.1
through 330-N.M. Depending on the particular combination
of compression algorithm 310 and rendering engine 208
selected by the user, SGE 202 generates a different represen-
tation-specific shader 204 for a particular set of BXDF data
216. As shown, for N total compression algorithms 310 and M
total rendering engines 208, N*M different representation-
specific shaders 204 are possible for a particular set of BxDF
data 216. In one embodiment, a representation-specific
shader 204 generated for a particular rendering engine 208
may be used by other rendering engines 208 to produce a
visual representation of a surface.

As one having ordinary skill in the art should understand, a
shader is a program associated with a rendering engine used
by that rendering engine to colorize pixels to produce a
desired appearance. For example, a shader could be pro-
grammed for a rendering engine to colorize pixels associated
with a concrete material surface, while another shader could
be programmed for that rendering engine to colorize pixels
associated with a liquid material surface.
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A user may generate some or all of the possible represen-
tation-specific shaders 330-1 through 330-N.M correspond-
ing to the different combinations of compression algorithms
310-1 through 310-N and rendering engines 320-1 through
320-M, and may compare the effectiveness of each represen-
tation-specific shader 330-1 through 330-N.M for rendering a
given set of BXDF data 216 with a particular rendering engine
208. For example, some representation-specific shaders
330-1 through 330-N.M may be better suited for 3D anima-
tion rendering, while others may be better suited for static
image rendering.

In one embodiment, SGE 202 may generate representa-
tion-specific shader 330 automatically in response to a user
selection of one of the compression algorithms 310 and one of
the rendering engines 320. Importantly, the user is not
required to manually program the representation-specific
shader in a programming language, such as C++, to observe
the performance of a particular combination of compression
algorithm 310 and rendering engine 320. SGE 202 allows a
user to visually inspect the result of rendering using each
representation-specific shader 330 generated for each combi-
nation of compression algorithm 310 and rendering engine
320.

FIG. 4 is a flowchart of method steps for generating a
representation-specific shader and associated shader data,
according to one embodiment of the invention. Persons
skilled in the art will understand that, even though the method
400 is described in conjunction with the systems of FIGS. 2
and 3, any system configured to perform the method steps, in
any order, is within the scope of the present invention.

As shown, the method 400 begins at step 402, where either
a BxDF file 214 or an input file 210 is received by SGE 202.
It a BxDF file 214 is received, then at step 408 SGE 202 loads
the BxDF file 214 into BxDF data 216, and the method 400
advances to step 410.

Ifthe BxDF file 214 is not received at step 402, then at step
404 SGE 202 receives input file 210. At step 406, conversion
library 212 converts the input file 210 into BxDF format and
stores the converted data in BxDF data 216. The method 400
then advances to step 410. In one embodiment, input file 210
is an XML file, and conversion library 212 is an XML con-
version library.

At step 410, SGE 202 receives a user selection of one of the
compression algorithms 310-1 through 310-N. As previously
described in FIGS. 2 and 3, compression algorithms 310-1
through 310-N are subroutines stored by 1/O library 218 that
implement different models that may be used to compress the
BxDF data 216. In one embodiment, a user may specify the
accuracy of the selected compression algorithm 310. At step
412, /O library 218 executes the selected compression algo-
rithm 310 and generates the compressed/factored representa-
tion 222. Compressed/factored representation 222 may
occupy a smaller memory footprint than BXxDF data 216, and
may approximate BxDF data 216.

At step 414, SGE 202 receives a user selection of one of the
available rendering engines 320-1 through 320-M. A user
may select the rendering engine 320 based on, for example,
the surface data represented by BxDF data 216, or the type of
rendering desired, which may include 2D drawings, 3D ani-
mations, or computer simulations. At step 416, representa-
tion-specific /O module 224 generates one of the represen-
tation-specific shaders 330-1 through 330-N.M based on the
data stored in compressed/factored representation 222, the
compression algorithm 310 used to generate compressed/
factored representation 222, and the selected rendering
engine 320.
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At step 418, representation-specific /O module 224 may
generate encrypted shader data 206 according to user speci-
fication. If the user wishes to encrypt shader data 206, then at
step 420 representation-specific /O module 224 accesses
encryption library 226 via I/O library 218 and generates
encrypted shader data 206 based on the data stored in com-
pressed/factored representation 222, the compression algo-
rithm 310 used to generate compressed/factored representa-
tion 222, and the selected rendering engine 220. A user may
opt to encrypt shader data 206 when, for example, input file
210 or BxDF file 214 includes proprietary data or proprietary
data formats. In alternative embodiments, the representation-
specific shader 204 may also be encrypted using the encryp-
tion library 226.

If'the user does not wish to encrypt shader data 206, then at
step 422, representation-specific I/O module 224 generates
shader data 206 based on the data stored in compressed/
factored representation 222, the compression algorithm 310
used to generate compressed/factored representation 222,
and the selected rendering engine 320.

Once a representation-specific shader 330 and associated
shader data 206 have been generated via the method 400, a
visual representation of the surface described by either input
file 210 or BxDF file 214 may be rendered using the selected
rendering engine 320, the representation-specific shader 330,
and the associated shader data 206. The visual representation
may then be output to a visual display.

FIG. 5 is a block diagram of a computer system 500 con-
figured to implement one or more aspects of the present
invention. As shown, the computer system 500 includes a
processor element 502 (e.g., a CPU), a memory 504, e.g.,
random access memory (RAM) and/or read only memory
(ROM), an SGE 202, as described herein, stored within
memory 504, various input/output devices 506, which may
include user input devices such as a keyboard, a keypad, a
mouse, and the like, and storage devices, including but not
limited to, a tape drive, a floppy drive, a hard disk drive or a
compact disk drive, and a receiver, and various display
devices 508, which may include a cathode-ray tube (CRT)
monitor or an liquid-crystal display (LCD) monitor.

In sum, a shader generation engine (SGE) receives surface
data that may be captured with a material scanner and con-
verts the surface data into BxDF data. An 1/O library within
the SGE converts the BXDF data into a compressed represen-
tation based on a user selection of'a compression algorithm. A
representation-specific [/O module receives the compressed
representation and generates a shader and associated shader
data based on a user selection of a rendering engine.

Advantageously, the shader generation process is simpli-
fied compared to prior art techniques. The SGE is capable of
generating different shaders for a particular set of surface data
according to a user selection of a compression algorithm and
a user selection of a rendering engine, allowing the user to
compare the performance quality of shaders associated with
different compression algorithm-rendering engine combina-
tions without manually programming the shaders. Addition-
ally, the SGE may generate shaders and shader data based on
artificially-generated surface data. For example, a user may
provide surface data generated from a computer model of a
material, or may provide surface data produced by blending
several sets of surface data together and modulating the com-
bined surface data with texture data.

While the forgoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof. For example, aspects of the present invention
may be implemented in hardware or software or in a combi-
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nation of hardware and software. One embodiment of the
invention may be implemented as a program product for use
with a computer system. The program(s) of the program
product define functions of the embodiments (including the
methods described herein) and can be contained on a variety
of computer-readable storage media. Illustrative computer-
readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory devices
within a computer such as CD-ROM disks readable by a
CD-ROM drive, flash memory, ROM chips or any type of
solid-state non-volatile semiconductor memory) on which
information is permanently stored; and (ii) writable storage
media (e.g., floppy disks within a diskette drive or hard-disk
drive or any type of solid-state random-access semiconductor
memory) on which alterable information is stored. Such com-
puter-readable storage media, when carrying computer-read-
able instructions that direct the functions ofthe present inven-
tion, are embodiments of the present invention. Therefore, the
scope of the present invention is determined by the claims that
follow.

What is claimed:

1. A method for generating a shader that is used by a
rendering engine to render a visual representation of a com-
puter model, the method comprising:

receiving a set of surface data that describes a surface in

view of various lighting conditions;
compressing the set of surface data to generate a com-
pressed representation of the set of surface data based on
a selected compression algorithm;

selecting a rendering engine;

generating a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generating a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

2. The method of claim 1, wherein the set of surface data is
derived at least in part from a bidirectional reflectance func-
tion and a bidirectional transmittance function.

3. The method of claim 2, wherein the set of surface data is
included in an Extensible Markup Language (XML) file.

4. The method of claim 2, further comprising the step of
converting the set of surface data to bidirectional reflectance
function data and bidirectional transmittance function data.

5. The method of claim 1, further comprising the step of
encrypting the shader data to generate encrypted shader data.

6. The method of claim 5, wherein the set of surface data
comprises proprietary surface data, and the encrypted shader
data prohibits access to the proprietary surface data.

7. The method of claim 1, wherein the compression algo-
rithm implements a Phong model, a Blinn-Phong model, a
Ward model, a Cook-Torrence Model, a Ashikmin model, a
Lafortune model, a He model, a Splines model, a spherical
harmonic model, a spherical wavelets model, a singular val-
ues decomposition model, a normalized decomposition
model, a non-negative matrix factorization model, a har-
monic factorization model, or an importance sampling ori-
ented factorization model.

8. The method of claim 7, wherein the step of compressing
the set of surface data is based on an accuracy value for the
compression algorithm.

9. The method of claim 1, wherein the rendering engine
comprises either a software rendering engine or a hardware
rendering engine configured to implement ray tracing, raster-
ization, radiosity, or ray casting operations.
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10. The method of claim 1, further comprising:

compressing the set of surface data to generate a second

compressed representation of the set of surface data
based on a second selected compression algorithm;
selecting a second rendering engine;

generating a second shader based on the second rendering

engine, the second selected compression algorithm, and
the second compressed representation of the set of sur-
face data; and

generating a second set of shader data, via the second

shader, based on the second compressed representation,
wherein the second set of shader data includes a second
set of material characteristics for coloring pixels of the
visual representation.

11. The method of claim 1, further comprising providing
the shader data to the shader.

12. The method of claim 1, wherein the compression algo-
rithm is selected by a user from a library of compression
algorithms, and wherein the rendering engine is selected by
the user from amongst a plurality of rendering engines.

13. A non-transitory computer-readable medium that,
when executed by a processor, cause a shader generation
engine to generate a shader used by a rendering engine to
render a visual representation of a computer model, the
method comprising:

receiving a set of surface data that describes a surface in

view of various lighting conditions;
compressing the set of surface data to generate a com-
pressed representation of the set of surface data based on
a selected compression algorithm;

selecting a rendering engine;

generating a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generating a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

14. The non-transitory computer-readable medium of
claim 13, wherein the set of surface data is derived at least in
part from a bidirectional reflectance function and a bidirec-
tional transmittance function.

15. The non-transitory computer-readable medium of
claim 14, wherein the set of surface data is included in an
Extensible Markup Language (XML) file.

16. The non-transitory computer-readable medium of
claim 14, further comprising the step of converting the set of
surface data to bidirectional reflectance function data and
bidirectional transmittance function data.

17. The non-transitory computer-readable medium of
claim 13, further comprising the step of encrypting the shader
data to generate encrypted shader data.

18. The non-transitory computer-readable medium of
claim 17, wherein the set of surface data comprises propri-
etary surface data, and the encrypted shader data prohibits
access to the proprietary surface data.

19. The non-transitory computer-readable medium of
claim 13, wherein the compression algorithm implements a
Phong model, a Blinn-Phong model, a Ward model, a Cook-
Torrence Model, a Ashikmin model, a Lafortune model, a He
model, a Splines model, a spherical harmonic model, a
spherical wavelets model, a singular values decomposition
model, a normalized decomposition model, a non-negative
matrix factorization model, a harmonic factorization model,
or an importance sampling oriented factorization model.
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20. The non-transitory computer-readable medium of
claim 19, wherein the step of compressing the set of surface
data is based on an accuracy value for the compression algo-
rithm.

21. The non-transitory computer-readable medium of
claim 13, wherein the rendering engine comprises either a
software rendering engine or a hardware rendering engine
configured to implement ray tracing, rasterization, radiosity,
or ray casting operations.

22. The non-transitory computer-readable medium of
claim 13, further comprising:
compressing the set of surface data to generate a second
compressed representation of the set of surface data
based on a second selected compression algorithm;

selecting a second rendering engine;

generating a second shader based on the second rendering
engine, the second selected compression algorithm, and
the second compressed representation of the set of sur-
face data; and

generating a second set of shader data, via the second
shader, based on the second compressed representation,
wherein the second set of shader data includes a second
set of material characteristics for coloring pixels of the
visual representation.

23. The non-transitory computer-readable medium of
claim 13, wherein the shader data is provided to the shader.

24. The non-transitory computer-readable medium of
claim 13, wherein the compression algorithm is selected by a
user from a library of compression algorithms, and wherein
the rendering engine is selected by the user from amongst a
plurality of rendering engines.

25. A system for generating a shader that is used by a
rendering engine to generate a visual representation of a
computer model, the system comprising:

a processor; and
one or more memories that store instructions configured to:

receive a set of surface data that describes a surface in
view of various lighting conditions;

compress the set of surface data to generate a com-
pressed representation of the set of surface data based
on a selected compression algorithm;

select a rendering engine;

generate a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generate a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

26. The system of claim 25, wherein the one or more
memories include a conversion library configured to imple-
ment the step of receiving the set of surface data.

27. The system of claim 25, wherein the one or more
memories include an input/output library configured to
implement the step of compressing the set of surface data.

28. The system of claim 25, wherein the one or more
memories include a representation-specific input/output
module configured to implement the steps of generating the
shader and generating the set of shader data.

29. The system of claim 25, wherein the one or more

memories are further configured to provide the shader data to
the shader.
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30. The system of claim 25, wherein the compression algo-
rithm is selected by a user from a library of compression
algorithms, and wherein the rendering engine is selected by
the user from amongst a plurality of rendering engines.
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